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Résumé
Nous construisons un plongement plein et fidèle de la catégorie des variétés
à bord dans certains topos ”lisses” dont le topos du Cahiers [2] et le topos F
d’idéaux fermés [9]. Nous démontrons que le plongement préserve les produits
d’une variété à bord avec une variété sans bord et les recouvrements ouverts.
De plus, il envoie des prolongations de variétés par algèbres de Weil dans des
exponentielles ayant des structures infinitésimales comme exposants. Notre
outil principal est l’opération de ”doubler” une variété à bord pour obtenir une
variété sans bord. Cet article est une réécriture, avec quelques améliorations,
de [11].

In [2], E.Dubuc introduced the notion of a well adapted model of SDG
(Synthetic Differential Geometry), and built one such, the Cahiers topos as
is usually called, showing that SDG was applicable to the study of classical
smooth manifolds without boundary. (See also [5].) These models are, in fact,
adapted to differential calculus, but the development of integral calculus in
the context of SDG (cf [6]) requires a finer notion of adaptation. In fact,
integral calculus requires the notion of closed interval, a notion modelled
rather by manifolds with boundary such as R≥0 and even manifolds with
corners. The aim of this paper is to exhibit a fully faithful embedding of
the category M∂ of manifolds with boundary in the Cahiers topos as well as
other ”smooth” toposes (to be defined later on.)

This paper is a re-working of and hopefully an improvement on [11]. The
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exact relation to that paper is explicitly stated in the remark just before
theorem 2.5.

We are very grateful to Anders Kock for his careful reading of two previous
versions of this paper that saved us from error and awkward formulations on
more than one occasion.

1 Generalities on manifolds with boundary

Along with the space Rn, the simplest manifold of dimension n, there are cer-
tain subspaces which are almost equally important, but fail to be manifolds.
Possibly the simplest such is H = the non-negative reals. More generally, let
H
n = R≥0 × R

n−1. (Thus H = H
1). The space Hn has an obvious boundary

∂Hn = {0}×Rn−1 which can be easily visualized in lower dimensions: a point
n = 1, a line for n = 2, a plane for n = 3, etc. Taking this space as a model,
we define the notion of a manifold with boundary, following [10].

A (topological) manifold with boundary B is a Hausdorff topological space
with the property that every point has a neighborhood homeomorphic to
either Rn or Hn = R≥0 × R

n−1. We call n the dimension of B. If b has a
neighborhood homeomorphic to Hn by a homeomorphism h such that h(x) ∈
∂Hn, we say that b is a boundary point. The set of of all such points, ∂B is
called the boundary of B. We define the interior of B, int(B) to be the set
int(B) = B \ ∂B.

For these definitions to make sense, we need to prove several things, e.g.
that Rn is not homeomorphic to Rm whenever m 6= n, that boundary points
are independent of the homeomorphisms, etc. These are technical matters,
depending essentially on Brouwer theorem on invariance of dimension. The
reader may consult [10].

A C∞ manifold (with boundary) B of dimension n consists of a topolog-
ical manifold with boundary of dimension n together with a differentiable
structure D. A differentiable structure is a collection of couples (U, h) such
that the U ’s are open sets of B and h a homeomorphism of U with either Rn

or Hn satisfying the following properties:

(1) The U ’s cover B
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(2) If (U1, h1) and (U2, h2) belong to D, then the map

h1h
−1
2 : h2(U1 ∩ U2)−→Rn

is C∞.

(3) The collection D is maximal with respect to property (2).

In (2) we still need to define C∞ functions with domain Hn. We say that
f : Hn−→Rn is C∞ at a point p ∈ ∂Hn if there is an open neighborhood V of
p in Rn and a C∞ function g : V−→Rn such that g and f coincide on V ∩Hn.
A function f : Hn−→Rn is C∞ if it is C∞ at every point.

In practice, to define such a manifold it suffices to define a collection
(U, h) satisfying (1) and (2), since we can always extend it uniquely to a
differentiable structure.

Ordinary manifolds are those whose boundary is empty. From now on, we
consider only C∞ manifolds (with boundary). These we call simply ”mani-
folds with boundary”.

In [10], the notion of morphism between manifolds with boundary is also
defined. We let M∂ the category of manifolds with boundary and M the
category of manifolds without boundary.

Let B be a manifold with boundary. We say that a manifold with bound-
ary C is a submanifold of B if, as sets, C is included in B and the inclusion
map is smooth. A closed submanifold of B is a submanifold which is a closed
subspace of B (as a topological space).

Our main tool to study manifolds with boundary is the operation of ”dou-
bling” a manifold with boundary B to obtain its double D(B), a manifold
without boundary. Properties of manifolds with boundary will then be re-
duced to the corresponding ones for manifolds without boundary.

If B is a manifold with boundary, we let D(B) the manifold without
boundary obtained by taking two disjoint copies of B and identifying their
boundaries (cf. [10] for a precise description.) This construction, although
functorial in the category of topological manifolds with boundary, it is not
functorial in the category of smooth manifolds with boundary. There is no
canonical differential structure on D(M) and the definition of a differentiable
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structure depends on the choice of a product neighbourhood of ∂B. Never-
theless, structures resulting from different choices are diffeomorphic. The
construction, however, has some good properties:

Proposition 1.1

(i) D(B) is a manifold without boundary

(ii) B is canonically embedded in D(B) as a closed subset

(iii) If H ⊂ B is open, D(H) ∩B = H

(iv) If H ⊂ B is open, D(H) is an open subset of D(B)

Proof: (i) can be found in [10]. (ii) is straightforward. We turn to (iii). Let
p ∈ H ∩ D(B). The there is an open H ′↪→B and a φ : H ′ ' H

n, sending p
into x ∈ ∂Hn. Let U = φ(H ∩ H ′). Then x ∈ U ⊆ H

n. Since U is open in
H
n we may find, using stereographic projections, a V 3 x open in U and a

diffeomorphism ψ : V ' H
n leaving x fixed. But φ−1(V ) contains p, is an

open subset of H and is diffeomorphic to Hn by a diffeomorphism (namely
ψ ◦ φ) that sends p into x ∈ ∂Hn. This concludes the proof. (iv) is an
immediate corollary of (iii).

Weil prolongations ([12], see also [2]) can be extended to manifolds with
boundary. If B is a manifold with boundary and W is a Weil algebra, we
define a manifold with boundary WB=manifold of points W -close of B to be
WB = C∞−alg(C∞(B), W ). To show that it is a manifold, some preliminary
work is required.

Notice that there is a canonical map ρ :WB−→RB defined as the compos-

ite of φ with the canonical map π0 : W−→R. But RB = C∞−alg(C∞(B),R)
may be identified with B. Indeed, embed B as a closed set in some Rn and let
τ : C∞(Rn)−→C∞(B) be the canonical quotient (Whitney’s theorem!). Take
φ : C∞(B)−→R. By composing it with τ we obtain a map φ̃ : C∞(Rn)−→R.
But this map is just ev(p) for some p ∈ Rn. Using smooth Urysohn ([3], page
56), one can easily prove that ev(p) factors through τ iff p ∈ B. Thus, p ∈ B,
showing that ρ may be viewed as a map ρ :W B−→B.

To show that WB is a manifold we proceed as follows: since B is such
a manifold, for each b ∈ B, there is an open neighbourhood Hb of b which
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is diffeomorphic to either Rn or Hn. The family {Hb}b∈B is an open cover of
B. We call such a cover a Euclidean cover of B. The ”double” of this cover,
{D(Hb)}b∈B is an open cover of D(B). (Cf. 1.1). . Notice that

D(Hb) '
{
R
n + R

n if Hb ∩ ∂B = ∅
R
n otherwise

From [2], we know that {WD(Hb)}b∈B is an open cover of WD(H). We claim
that {WHb}b∈B is an open cover of WB. Since WHb is homeomorphic either
to W

R
n ' R

nk or W
H
n ' H

nk, where k=dimension of W (as a vector space
over R) (cf. lemma 1.5 below), this will show that WB is a manifold (with
boundary) of dimension nk.

This is a consequence of the following series of lemmas and corollaries

Lemma 1.2 Let H↪→B be open (B a manifold with boundary). Then the
morphism WH−→WB is monic.

Proof: Unravelling the definitions this lemma says that whenever we have a
commutative diagram

C∞(B)

φ

""DD
DD

DD
DD

DD
DD

DD
DD

DD

ρ

��
C∞(H)

φ2

//
φ1 //

W

then φ1 = φ2.

Since D(H) is open in D(B), the map WD(H)−→WD(B) is monic (Cf.
[2]) and this means that in the outer diagram of

C∞(D(B)) τ ′ // //

ρ′

��

C∞(B)

φ

""DD
DD

DD
DD

DD
DD

DD
DD

DD

ρ

��
C∞(D(H)) τ

// // C∞(H)
φ2

//
φ1 //

W
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φ1 ◦ τ = φ2 ◦ τ. Since τ is a quotient, φ1 = φ2.

The same is true if H is closed in B, since τ : C∞(B)−→C∞(H) is a
quotient.

Lemma 1.3 Let W be a Weil algebra and π0 : W−→R the canonical map.
Let τ : C∞(Rn)−→C∞(Hn) be the canonical quotient. A morphism φ :
C∞(Rn)−→W of C∞-algebras factors as shown iff the unique p ∈ R

n such
that π0 ◦ φ = ev(p) belongs to Hn

C∞(Rn)

φ

""EEEEEEEEEEEEEEEEEE

τ

����

ev(p)

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

C∞(Hn) //______ W
π0 //

R

Proof: Assume that p ∈ H
n. We have to show that φ factors through τ or,

equivalently, that φ(f) = 0 whenever f |
H

n = 0. Since W is a Weil algebra,

there is a k ∈ N such that mk+1
W = 0, where mW is the maximal ideal of W.

According to the Taylor development of f around p with Hadamard’s
remainder, there are functions gα with |α| = k + 1 (not necessarily unique)
such that

f(x) = Σ
|α|=k
|α|=01/α!(x1 − p1)

α1 . . . (xn − pn)
αn ∂|α|f(p)/∂xα1

1 . . . xαn
n

+
∑
|α|=k+1(x1 − p1)

α1 . . . (xn − pn)
αngα(x, p)

As usual, we have used |α| = α1 + . . .+ αn and α! = α1! · . . . · αn! whenever
α = (α1, . . . , αn).

Since f vanishes on Hn, it is flat in p and so the first sum vanishes, i.e.,

f(x) =
∑
|α|=k+1(x1 − p1)

α1 . . . (xn − pn)
αngα(x, p)

Applying φ
φ(f) =

∑
|α|=k+1w

α1
1 . . . wαn

n φ(gα(x, p))

where wi = φ(xi − pi).

But wi ∈ mW , since π0 ◦ φ(xi − pi) = ev(p)(xi − pi) = 0. Therefore this
term vanishes, i.e., φ(f) = 0.
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The proof in the other direction: if φ is the quotient of φ, π0 ◦ φ = ev(q)
for a unique q ∈ B. Since functions separate points, p = q.

Corollary 1.4 The square

W
H
n � � //

��

W
R
n

��
H
n � � //

R
n

is a pull-back.

Proof: Immediate by lemma 1.3.

Lemma 1.5
W
H
n ' H

nk

where k is the linear dimension of W over R.

Proof: This follows from W
R
n ' R

nk and the fact that the square

H
nk � � //

��

R
nk

��
H
n � � //

R
n

is a pull-back which, in turn, is a consequence of the fact that any square

C × A
� � //

��

C ×B

��
A

� � // B

is obviously a pull-back.

Lemma 1.6 If {Hb↪→B}b∈B is a Euclidean cover, then⋃
b∈B

WHb =WB.
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Proof: Chase elements in the diagram

XB
� � //

���
�
�
�
�
�
�
�
�
�
�
�
�

XD(B)

��

XHb
� � //

��

. �

==zzzzzzzz
XUb

, �

;;vvvvvvvvv

��

B
� � //____________ D(B)

Hb
� � //
- 


<<y
y

y
y

y
Ub

, �

::uuuuuuuuu

recalling that
⋃
b∈B

WD(Hb) =WD(B).

Corollary 1.7 If {Hα↪→B}α is any open cover of B,⋃
α

WHα =WB

Proof: Cover each Hα by a Euclidean cover.

This finishes the proof that WB is a manifold (with boundary).

Corollary 1.8 The following diagram is a pull-back

WB
� � //

��

WD(B)

��
B

� � // D(B)

Proposition 1.9 If W is a Weil algebra, then WB↪→WD(B) is closed.
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Proof: Use Euclidean covers and the fact that ”being closed” is a property
of local character. In details: let {Hb|b ∈ B}b∈B be a Euclidean cover of B.
Then we have commutative diagrams, according to whether Hb ∩ ∂B = ∅ or
not

WHb
� � // WD(Hb) WHb

� � // WD(Hb)

R
nk � � //

'

OO

R
nk + R

nk

'

OO

H
nk � � //

'

OO

R
nk

'

OO

Notice that in the first, we have used that the two copies of Rn form an
open cover of Rn + R

n. Furthermore, Rn↪→Rn + R
n and Hnk↪→Rnk are closed.

Hence, in both cases, WHb↪→WD(Hb) is closed for each b ∈ B. Let φ ∈W
D(B) \W B. Then there is a b ∈W D(Hb) \W Hb. The image of φ under the
above diffeomorphisms belongs to either Rnk +R

nk \Rnk or Rnk \Hnk both of
which are open (the first in Rnk +Rnk, the other in Rnk). Hence, their images
under the diffeomorphism are open in WD(Hb) and disjoint from WHb. This
concludes the proof.

In [2], a canonical map Φ : X(YD(B))−→X⊗YD(B) is constructed and
shown to be a bijection. The same formula defining Φ defines a canonical
map: Φ : X(YB)−→X⊗YB in such a way that the top of the next diagram
commutes

Proposition 1.10 The map Φ is a bijection.

Proof: Take a Euclidean cover {Hb|b ∈ B}b∈B of B and chase the diagram
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X(YD(B))
Φ // X⊗YD(B)

X(YB)
+ �

88qqqqqqqqqqq
Φ // X⊗YB

+ �

88qqqqqqqqqqq

X(YD(Hb))
?�

OO�
�
�
�
�
�
�
�
�
�
�
�
�

Φ′ //____________ X⊗YD(Hb)
?�

OO

X(YHb)
+ �

88qqqqqq
Φ′ //

?�

OO

X⊗YHb

?�

OO

+ �

88qqqqqqqqqq

noticing that Φ and Φ′ are bijections ([2]).

The following plays a key role in the main theorem (theorem 2.5). For
the notions of near-point determined algebra, closed ideal and their relations,
see e.g. [9] page 44.

Proposition 1.11 Let W be a Weil algebra and A a near-point determined
algebra. Then there are natural (in A) canonical bijections

C∞(WRn) −→ A
C∞(Rn)−→A⊗W

C∞(WHn) −→ A
C∞(Hn)−→A⊗W

Proof: Let us prove the first. Since W
R
n = C∞ − alg(C∞(Rn),W ), we have

W
R
n = W n.

Let {1, w1, . . . , wk−1} be a linear basis of W, i.e., W = R[w1, . . . , wk−1] =
R
k. Hence W n = (Rk)n, A ⊗ W = A[w1, . . . , wk−1] and C∞(WRn) ⊗ W =

(C∞(Rk)n))k. With these identifications, we have to show the following equiv-
alence

φ : C∞((Rk)n) −→ A
ψ : C∞(Rn)−→A[w1, . . . , wk−1]

Following [2], we define

ψ(πi) = φ(π1π
k
i ) + w1φ(π2π

k
i ) + . . .+ wk−1φ(πkπ

k
i )
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Notice that the πiπ
k
j constitute a set of generators for C∞((Rn)k). Then φ

is completely determined by the nk elements aij = φ(πiπ
k
j ). Similarly, ψ is

completely determined by the n elements ψ(πi) of A[w1, . . . , wk−1]. But each
of these is, in turn, determined by the k elements (a1i, . . . , aki). Thus, φ and
ψ are determined by the same nk elements of A. This concludes the proof.

For the second, we formulate first a lemma. For the definition of closed
ideal, see e.g. [9] page 44.

Lemma 1.12 Let I be a closed ideal in C∞(Rm) and let ai : Rm−→R be
smooth functions (i = 1, . . . , n). The following are equivalent:

1. For every µ ∈ m
H

n , µ(a1(x), . . . , an(x)) ∈ I

2. For every ρ ∈ mH, ρ(a1(x)) ∈ I

3. a1(x0) ≥ 0 for all x0 ∈ Z(I)

Proof:
1 implies 2: Let ρ ∈ mH. Define µ(u1, . . . , un) = ρ(u1). Then ρ(a1(x)) =

µ(a1(x), . . . , an(x)) ∈ I since µ ∈ m
H

n .
2 implies 3: Since H is closed, we may pick ρ such that ρ−1(0) = H. (See

e.g. [9] page 30). Then, obviously, ρ(a1(x0)) = 0. Hence a1(x0) ≥ 0 (by
choice of ρ.)

3 implies 1: Let f : Rm−→R be defined by f(x) = µ(a1(x), . . . , an(x)).
The Taylor’s development of f around x0 (as a formal power series) is

Tx0(f) = f(x0) +
∑
α

(∂|α|f/∂xα1
1 · · · ∂xαn

n )(x0)h
α1
1 · · ·hαn

n

with hi = xi − (x0)i. Let µ ∈ m
H

n and x0 ∈ Z(I). Therefore a1(x0) ≥ 0
and hence f(x0) = 0. Furthermore, since all partial derivatives contain
partial derivatives of µ at x0 as factors, these terms are 0 (µ is flat at
(a1(x0), . . . , an(x0)) and so Tx0(f) = 0. A fortiori, Tx0(f) ∈ Tx0(I) for ev-
ery x0 ∈ Z(I) and so f ∈ I by the very definition of I being closed.

If A = C∞(Rn)/I, we shall write A`(a1, . . . an) ∈ Hn as a shorthand
for the statement ”∀µ ∈ m

H
nµ(a(x)) ∈ I” where ai : Rn−→R is a function

whose equivalence class modulo I is ai (i = 1, . . . n). Instead of A`a ∈ H we
sometimes write A`a ≥ 0.
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Corollary 1.13 Let A = C∞(Rm)/I with I closed and φ : C∞(Rn)−→A.
Then φ factors as shown

C∞(Rn)

φ

!!DD
DD

DD
DD

DD
DD

DD
DD

DD

τ

����
C∞(Hn) //______ A

iff A`φ(π1) ≥ 0.

Proof: The map φ factors as indicated iff for every µ ∈ C∞(Rn) if τ(µ) = 0,
then φ(µ) = 0, i.e., if for every µ ∈ m

H
n , µ(a1(x), . . . an(x) ∈ I, where

ai : Rm−→R are functions whose equivalence classes (modulo I) are φ(πi)
(i = 1, . . . , n.) By the lemma, this is equivalent to say that A`φ(π1) ≥ 0.

To complete the proof of the second formula, we recall (cf. [9]) that
nilpotent elements are ≥ 0 and the sum of two elements ≥ 0 is again ≥ 0.
Thus, returning to the proof of the first (formula) A[w1, . . . , wk]`ψ(π1) ≥ 0
iff A`φ(π1π

k
1) ≥ 0. Apply now the corollary.

2 Smooth toposes

Although several notions of ”smooth toposes” besides the Cahiers topos have
been introduced in the literature (say [9] I.4) we shall reserve this terminology
for a particular class, and warn the reader that it does not cover all of them.

A smooth topos is a category of sheaves on a co-site E of C∞-rings having
the following properties

Rings of manifolds (without boundary) C∞(M) belong to E

Weil algebras belong to E
All rings of E are near-point determined
Representables are sheaves
{C∞(M)−→C∞(Uα)}α is a cocovering family,

In the last property, we assume that {Uα↪→M}α is an open cover of M ∈M.
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For several purposes, it is more natural to consider the category L of loci,
defined to be Eop, the opposite category of E rather than E itself. Its objects
are the same as those of E but the arrows are reversed. If A and B are C∞-
algebras and l(A) and l(B) the same algebras considered as loci, we have, by
definition, the equivalence

l(A)−→l(B) in L

B−→A in C∞ − rings

The cocovers of E become covers in L and this helps the intuition. We shall
not distinguish between these categories notationally, but the context will
indicate which one we have in mind. For instance, if we say that covers are
preserved, it is clear that we are thinking of L.

We let E to be the (Grothendieck) topos defined by the co-site L.

Let us remark that the inclusion of Weil algebras in E guarantees that the
generalized Kock-Lawvere axiom is valid in the topos E . Thus, every smooth
topos satisfies this axiom. The inclusion of those particular cocovers, on the
other hand, will guarantee that open covers of manifolds without boundary
will be preserved by the embedding in E to be described below.

A natural solution to the problem of embedding manifolds with boundary
in a smooth topos is to represent B ∈M∂ from ”outside”: we define{

M∂−→E
B 7−→ ah

C∞(B)
0

where a is the associated sheaf and h
C∞(B)
0 is the restriction of the functor

representable by C∞(B) to E, i.e., h
C∞(B)
0 (A) = C∞ − rings(C∞(B), A).

As usual in these studies, it is very hard to work with the associated sheaf
functor. Fortunately, we have the following

Proposition 2.1 Let B be a manifold with boundary. Then the functor
h
C∞(B)
0 is a sheaf in every smooth topos.

Proof: Embed B as a closed subset of some Rn. Let {A−→Aα}α be a co-
covering family and {ξα : C∞(B)−→Aα}α a compatible family. Then the
family {ξα ◦ τ}α is still compatible, where τ : C∞(Rn)−→C∞(B) is the
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canonical quotient. Since the functor representable by C∞(Rn) is a sheaf, by
definition of a smooth topos, there is a unique morphism θ′ : C∞(Rn)−→A
such that ρα ◦ θ′ = ξα ◦ τ.

We claim that θ′ factors through τ. Let f ∈ C∞(Rn) be such that f |B = 0.
Since ρα ◦ θ′ factors through τ, ρα ◦ θ′(f) = 0 for each α. But this clearly
implies that θ′(f) = 0. (Proof: define φ : C∞(R)−→A by φ(id) = θ′(f) and
use the fact that the functor representable by C∞(R) is a sheaf.)

So, we have thus the embedding of Weil algebras{
W−→E
W 7−→ l(W ) = hW

and the embedding of manifolds (with boundary){
M∂−→E
B 7−→ s(B) = hC

∞(B)

Two objects of E are particularly important in what follows: R = s(R) (”the
reals”) and H = s(H) (”the non-negative reals”).

In our main reference for sheaf semantics [9] , if A is a C∞-algebra, l(A)
is used for A itself, but as an object of the opposite of the category of C∞-
algebras. This creates no problem, since Yoneda lemma allows us to identify
l(A) with hA.

Lemma 2.2 The map sq : R−→H in E defined by sq(x) = x2 is dense in
the sense that Rsq : RH−→RR is monic.

Proof: Recall from [9] that the category of loci is the opposite of the category
of finitely generated C∞-algebras (i.e., of the form A = C∞(Rn/I where I is
an ideal). If A is such an algebra, l(A) is this algebra, but considered as a
locus. In what follows, we identify l(A) with hA ∈ E . Tis is possible since
representables are sheaves in E .

Recall from [9] that if A is a C∞-algebra, an element f of RH defined
at the stage l(A) = hA, is a map f : H × l(A)−→R. The composite f ◦ sq
(defined at the same stage) is the map:

R× l(A)
sq×l(A) // H × l(A)

f // R
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It suffices to show (since R is a ring) that if f ◦ sq × l(A) = 0, then f = 0.
Consider the commutative diagram with < α, φ > arbitrary

R× l(A)
sq×l(A) // H × l(A)

f // R

l(B)

<α,φ>

OO

f0

<<yyyyyyyyyyyyyyyyyy

It is enough to show that f0 = 0, but since B is near-point determined, we
may assume, without loss of generality, that B is a Weil algebra. We claim
that f0 = f◦ < α, φ >= 0.

In fact, either α(0) > 0 and the claim follows at once, or α(0) = 0. In
this case, the claim follows from the following synthetic argument:

Lemma 2.3 Let f : H−→R be such that f(x2) = 0. Then f |D∞ = 0.

Proof: We prove by induction that ∀n ∈ N ∃fn : H−→R such that f(x) =
xnfn(x). There is nothing to prove for n = 0. Assume that this holds for
n. Therefore, 0 = f(x2) = x2nfn(x

2) and by repeated applications of the
Lavendhomme principle (xf(x) ≡ 0 implies f(x) ≡ 0, cf. [7], page 25)
fn(x

2) = 0. In particular, fn(0) = 0 and hence, by Hadamard’s, there is fn+1 :
H−→R such that fn(x) = xfn+1(x). Hence f(x) = xnfn(x) = xn+1fn+1(x),
completing the induction. Let n be given. Since f(x) = xn+1fn+1(x), we
easily conclude that fn(0) = 0.

Remark 2.4 The same argument generalizes to show that sqn : Rn−→Hn

is dense, where Hn = {(x1, . . . , xn) ∈ Rn|x1 ≥ 0} and sqn(x1, . . . , xn−1, xn) =
(x2

1, . . . , xn−1, xn).

The following theorem is the main result of the paper. It improves [11] in
the following respects:

1. It corrects several errors and provides detailed proofs that were only
sketched.
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2. It is more general in the sense that it covers e.g, not only the Cahiers
topos, but the topos F of closed ideals of [9]. In [11] one of the condi-
tions require that the ideal I∗ should also belong to the ideals defining
the site, along with I. It seems to be an open problem, presumably
difficult, to decide whether I∗ is closed when I is. Thus, we don’t know
whether [11] applies to this topos.

3. It shows that Weil prolongations are sent into exponentials, a basic
result that was missing in [11].

4. The definition of smooth topos is formulated directly in terms of C∞-
algebras, rather than ideals of definition of C∞-algebras, These are less
natural (for instance, several ideals may define the same algebra).

Theorem 2.5 The embedding of the manifolds with boundary in a smooth
topos {

M∂−→E
B 7−→ s(B) = h

C∞(B)
0

is full and faithful, preserves open covers, products of the form M ×B (M a
manifold without boundary) and sends Weil prolongations into exponentials:
s(WB) = s(B)l(W )

Proof: Since Γ takes s(f) : s(B)−→s(C) into f : B−→C, it is clear that
the embedding is faithful. Let us prove that Weil prolongations are sent into
exponentials, i.e. : s(WB) = s(B)l(W ).

We have the following equivalences

l(A)−→s(WB)
C∞(WB)−→A
C∞(B)−→W ⊗ A
l(W ⊗ A)−→s(B)
l(W )× l(A)−→s(B)

l(A)−→s(B)l(W )

definition of s(WB)
universal property of prolongations
Yoneda
Yoneda sends coproducts into products
exponential adjointness

In particular, Γ(s(B)l(W ))=WB.

Let us turn to fullness. Assume that

16



s(B)
g

//
f // s(C)

are such that Γ(f) = Γ(g). We have to show that f = g. By embedding C
as a closed set of some Rn, it is enough to show that if f : s(B)−→R is 0 on
points, then it is 0.

Assume that Γ(f) = 0. As before, it is enough to show that for all
φ : l(W )−→s(B), f ◦ φ = 0. Taking exponential adjoints, we have to show,
equivalently, that the composite morphism in

1
x // s(B)l(W ) f l(W )

// Rl(W )

is 0.

But x ∈ WB and hence x ∈WHb for some b ∈ B, where {Hb}b∈B is a
Euclidean cover of B. Therefore, either Hn ' Hb or Rn ' Hb. We do only the
first, since the second is similar, but simpler. Let j : Hn↪→B be the obvious
composition, y ∈ HN such that j(y) = x and lef g = f ◦ s(j) : Hn−→R. The
global section of the composite of the two maps

Rn
sqn // Hn

g // R

is 0. Indeed: Γ(g ◦ sqn) = Γ(f) ◦ j ◦ Γ(sqn) = 0. This implies that g ◦ sqn = 0
which in turn implies that g = 0 by the density of sqn.

Taking adjointness, we obtain the following commutative diagram

l(W )
φ //

ψ

""EEEEEEEEEEEEEEEEE
s(B)

f // R

Hn

g

>>|||||||||||||||||?�

s(j)

OO

where ψ is the exponential adjoint of y. Therefore f ◦ φ = g ◦ ψ = 0. This
finishes the proof of fullness.

To show that open covers are preserved, we need a

Proposition 2.6 The embedding M∂−→E preserves pull-backs of the form

17



R
n f // C

H
n

g
//?�

OO

B
?�

OO

where C is a manifold with boundary and B↪→C is a closed submanifold.

Proof: We prove, equivalently, that near-point determined C∞-rings believe
that the diagram

C∞(C)
ρ′ //

τ ′

��

C∞(Rn)

τ

��
C∞(B) ρ

// C∞(Hn)

is a push-out. Since near-point determined C∞-rings can be embedded into
direct products of Weil algebras, it is enough to consider Weil algebras. Let
φ : C∞(Rn)−→W and ψ : C∞(B)−→W be such that φ ◦ ρ′ = ψ ◦ τ ′. Letting
π0 : W−→R be the canonical map. π0 ◦ φ = ev(p) for a unique p ∈ R

n.
Similarly, π0 ◦ ψ = ev(b) for a unique b ∈ B. But it is easy to check that
f(p) = b and this implies that p ∈ H

n. By lemma 1.3, there is a unique
θ : C∞(Hn)−→A such that θ ◦ τ = φ. We claim that θ ◦ ρ = ψ. But θ ◦ ρτ ′ =
θ ◦ τ ◦ ρ′ = φ ◦ ρ′ = ψ ◦ τ ′, and τ ′ is a quotient.

Corollary 2.7 Assume that j : H↪→B is open in M∂. Then the embedding
M∂−→E preserves the pull-backs of the form

D(H) � � D(j) // D(B)

H
� � j //?�

i

OO

B
?�

i′

OO
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Proof: As already mentioned, it is enough to check this for Weil algebras.

Let φ : l(W )−→s(D(H)) and ψ : l(W )−→s(B) be such that D(j) ◦ φ =
i′ ◦ ψ. Taking exponential adjoints and recalling that s(WB) = s(B)l(W ) and
Γ(s(B)l(W ))=WB, we are reduced to show that

WD(H) � � D(j) // WD(B)

WH
� � j //?�

i

OO

WB
?�

i′

OO

is a pull-back in sets. Take a Euclidean cover {Hb↪→H}b∈B of H. Since⋃
b∈B

WD(Hb) =W D(H) and
⋃W
b∈BHb =W H (cf. [2]) we are reduced to the

preceding corollary.

Now we can finish the proof that the embedding M∂−→E preserves open
covers: let {Hα↪→H}α be an open cover of B. Then D(Hα)↪→D(H)}α is an
open cover of D(B). Since the embedding preserves open covers of manifolds
without boundary (cf. [2])⋃

α

s(D(Hα) = s(D(H))

This implies that ⋃
α

s(D(Hα)) ∩ s(H) = s(H)

Invoking the last corollary, s(D(Hα)) ∩ s(H) = s(Hα).

For the preservations of products: Assume that M is a manifold without
boundary, then

s(M ×B) = s(M)× s(B)

Indeed, taking Euclidean covers for both M and B, say M =
⋃
m∈M Um and

B =
⋃
b∈BHb and using preservation of covers, we are reduced to show (by

distributivity of products over sums) that{
s(Rn × Hm) = Rn ×Hm

s(Rn × Rm) = Rn ×Rm
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according to whether Hb ' H
m or Hb ' R

m

But this is clear, since in the first case

R
n × Hm = R

n × R≥0 × Rm−1 ' R≥0 × Rn × Rm−1 = H
m+n

The same computation in the topos yields Rn × Hm ' Hn+m. The second
case is similar.

Proposition 2.8 The embedding sends Weil prolongations into exponen-
tials. More precisely,

s(WB) = s(B)l(W )

Proof: By using Yoneda lemma we can re-write 1.11 as the existence of
natural (in A) bijections

hA−→hC
∞(WR

n
)

hA−→(hC
∞(R

n
))h

W

hA−→hC
∞(WH

n
)

hA−→(hC
∞(H

n
))h

W

Recalling the definition of the embedding s and of l, this last assertion can
be re-written, in turn, as {

s(WRn) = s(Rn)l(W )

s(WHn) = s(Hn)l(W )

Let {Hα}α be a Euclidean cover of B. By corollary 1.3 WB = ∪Wα Hα. Since
open covers are preserved by s and l(W ) is an atom,

s(WB) =
∨
α s(

WHα)
=

∨
α s(Hα)

l(W )

= (
∨
α s(Hα))

l(W )

= s(B)l(W )

As examples of smooth topos we can mention the Cahiers topos in [2] and
the topos of closed ideals in [9]. Thus this theorem applies to both. As far as
I know, it is an open problem whether our main theorem can be extended to
larger ”smooth” toposes such as the topos G of germ-determined ideals (cf.
e.g. [9]).

To finish, we should remark that this is not the first reworking of [11]. In
fact a version of theorem 2.5 appears in Kock’s book [4] III.9, page 252. As
far as we can see however, he does not prove the preservation of open covers
or the fact that Weil prolongations are sent into exponentials.
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